Toward global optimization of neural networks: A comparison of the genetic algorithm and backpropagation

نویسندگان

  • Randall S. Sexton
  • Robert E. Dorsey
  • John D. Johnson
چکیده

The recent surge in activity of Neural Network research in Business is not surprising since the underlying functions controlling business data are generally unknown and the neural network offers a tool that can approximate the unknown function to any degree of desired accuracy. The vast majority of these studies rely on a gradient algorithm, typically a variation of back propagation, to obtain the parameters (weights) of the model. The well-known limitations of gradient search techniques applied to complex nonlinear optimization problems such as artificial neural networks have often resulted in inconsistent and unpredictable performance. Many researchers have attempted to address the problems associated with the training algorithm by imposing constraints on the search space or by restructuring the architecture of the neural network. In this paper we demonstrate that such constraints and restructuring are unnecessary if a sufficiently complex initial architecture and an appropriate global search algorithm is used. We further show that the genetic algorithm cannot only serve as a global search algorithm but by appropriately defining the objective function it can simultaneously achieve a parsimonious architecture. The value of using the genetic algorithm over backpropagation for neural network optimization is illustrated through a Monte Carlo study which compares each algorithm on in-sample, interpolation, and extrapolation data for seven test functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardness Optimization for Al6061-MWCNT Nanocomposite Prepared by Mechanical Alloying Using Artificial Neural Networks and Genetic Algorithm

Among artificial intelligence approaches, artificial neural networks (ANNs) and genetic algorithm (GA) are widely applied for modification of materials property in engineering science in large scale modeling. In this work artificial neural network (ANN) and genetic algorithm (GA) were applied to find the optimal conditions for achieving the maximum hardness of Al6061 reinforced by multiwall car...

متن کامل

Optimization of gas tungsten arc welding (GTAW) to develop the NiAl coating using neural networks and genetic algorithm

In this research, artificial neural network (ANN) and genetic algorithm (GA) were used in order to produce and develop the NiAl intermetallic coating with the best wear behavior and the most value of hardness. The effect of variations of current, voltage and gas flow on the hardness and wear resistance were optimized by ANN and GA. In the following, the optimum  values of current, voltage and g...

متن کامل

Modeling and Optimization of Roll-bonding Parameters for Bond Strength of Ti/Cu/Ti Clad Composites by Artificial Neural Networks and Genetic Algorithm

This paper deals with modeling and optimization of the roll-bonding process of Ti/Cu/Ti composite for determination of the best roll-bonding parameters leading to the maximum Ti/Cu bond strength by combination of neural network and genetic algorithm. An artificial neural network (ANN) program has been proposed to determine the effect of practical parameters, i.e., rolling temperature, reduction...

متن کامل

Optimizing Multiple Response Problem Using Artificial Neural Networks and Genetic Algorithm

  This paper proposes a new intelligent approach for solving multi-response statistical optimization problems. In most real world optimization problems, we are encountered adjusting process variables to achieve optimal levels of output variables (response variables). Usual optimization methods often begin with estimating the relation function between the response variable and the control variab...

متن کامل

Free Vibrations of Three-Parameter Functionally Graded Plates Resting on Pasternak Foundations

In this research work, first, based on the three-dimensional elasticity theory and by means of the Generalized Differential Quadrature Method (GDQM), free vibration characteristics of functionally graded (FG) rectangular plates resting on Pasternak foundation are focused. The two-constituent functionally graded plate consists of ceramic and metal grading through the thickness. A three-parameter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Decision Support Systems

دوره 22  شماره 

صفحات  -

تاریخ انتشار 1998